Abstract

The dynamic lot-sizing model (DLS) is one of the most frequently used models in production and inventory system because lot decisions can greatly affect the performance of the system. The practicality of DLS algorithms is hindered by the huge amount of computer resources required for solving these models, even for a modest problem. This study developed a parallel algorithm to solve the lot-sizing problem efficiently. Given that n is the size of the problem, the complexity of the proposed parallel algorithm is O( n 2 p) with p processors. Numerical experiments are provided to verify the complexity of the proposed algorithm. The empirical results demonstrate that the speedup of this parallel algorithm approaches linearity, which means that the proposed algorithm can take full advantage of the distributed computing power as the size of the problem increases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call