Abstract
The parallel adaptive model PLASMA has been developed for modeling a barotropic atmosphere. This model adapts the computational grid at every time step according to a physical error indicator. Thus, compared to uniform grid experiments the number of grid points is reduced significantly. At the same time, the error increases only slightly, when comparing with uniform grid solutions. For the discretization of the underlying spherical shallow water equations a Lagrange–Galerkin method is used. The unstructured triangular grid is maintained by the grid generator amatos and the large linear systems are solved by the parallel solver interface FoSSI. Experimental convergence is shown by means of steady-state and unsteady analytical solutions. PLASMA yields satisfactory results for quasi standard experiments, that is the Rossby–Haurwitz wave and zonal flows over an isolated mountain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.