Abstract

The niiA (nitrite reductase) and niaD (nitrate reductase) genes of Aspergillus nidulans are subject to both induction by nitrate and repression by ammonium or glutamine. The intergenic region between these genes functions as a bidirectional promoter. In this region, nucleosomes are positioned under nonexpression conditions. On nitrate induction under derepressing conditions, total loss of positioning occurs. This is independent of transcription and of the NirA-specific transcription factor but absolutely dependent on the wide-domain GATA-binding AreA factor. We show here that a 3-amino-acid deletion in the basic carboxy-terminal sequence of the DNA-binding domain results in a protein with paradoxical properties. Its weak DNA binding is consistent with its loss-of-function phenotype on most nitrogen sources. However, it results in constitutive expression and superinducibility of niiA and niaD. Nucleosome loss of positioning is also constitutive. The mutation partially suppresses null mutations in the transcription factor NirA. AreA binds NirA in vitro, and the mutation does not affect this interaction. The in vivo methylation pattern of the promoter is drastically altered, suggesting the recruitment of one or more unknown transcription factors and/or a local distortion on the DNA double helix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.