Abstract

Advances in computers and imaging have permitted the adoption of 3-dimensional (3D) virtual planning protocols in orthognathic surgery, which may allow a paradigm shift when the virtual planning can be transferred properly. The purpose of this investigation was to compare the versatility and precision of innovative computer-aided designed and computer-aided manufactured (CAD/CAM) surgical splints, intraoperative navigation, and "classic" intermaxillary occlusal splints for surgical transfer of virtual orthognathic planning. The protocols consisted of maxillofacial imaging, diagnosis, virtual orthognathic planning, and surgical planning transfer using newly designed CAD/CAM splints (approach A), navigation (approach B), and intermaxillary occlusal splints (approach C). In this prospective observational study, all patients underwent bimaxillary osteotomy. Eight patients were treated using approach A, 10 using approach B, and 12 using approach C. These techniques were evaluated by applying 13 hard and 7 soft tissue parameters to compare the virtual orthognathic planning (T0) with the postoperative result (T1) using 3D cephalometry and image fusion (ΔT1 vs T0). The highest precision (ΔT1 vs T0) for the maxillary planning transfer was observed with CAD/CAM splints (<0.23 mm; P > .05) followed by surgical "waferless" navigation (<0.61 mm, P < .05) and classic intermaxillary occlusal splints (<1.1 mm; P < .05). Only the innovative CAD/CAM splints kept the condyles in their central position in the temporomandibular joint. However, no technique enables a precise prediction of the mandible and soft tissue. CAD/CAM splints and surgical navigation provide a reliable, innovative, and precise approach for the transfer of virtual orthognathic planning. These computer-assisted techniques may offer an alternate approach to the use of classic intermaxillary occlusal splints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.