Abstract

Averaging method of the fractional general partial differential equations and a special case of these equations are studied, without any restrictions on the characteristic forms of the partial differential operators. We use the parabolic transform, existence and stability results can be obtained.

Highlights

  • IntroductionConsider the following fractional partial differential equations:. |q| = q1 + ... + qn, x = (x1, ..., xn) ∈ n, n is the n−dimensional Euclidean space, 0 < t < T

  • Consider the following fractional partial differential equations: ∂αu(x, t)∂tα = εL(x, t, D)u(x, t), (1) u(x, 0) = φ(x), (2) where L(x, t, D) = aq(x, t)Dq, |q|≤m where

  • We study a special case for problem (1), (2) when α = 1:

Read more

Summary

Introduction

Consider the following fractional partial differential equations:. |q| = q1 + ... + qn, x = (x1, ..., xn) ∈ n, n is the n−dimensional Euclidean space, 0 < t < T. Consider the following fractional partial differential equations:. Let Cb( n) be the set of all bounded continuous functions on n. Consider the following Cauchy problem [8]:. Where C( n) is the set of all continuous functions on n, N is a sufficiently large positive integer. For sufficiently large N, we find γ ∈ (0, 1) and a constant M > 0 such that: max |Dqu(x, t)|. N where c1 ≥ 0, c2 ≥ 0, tj, t ∈ [0, T ], j = 1, ..., r and W (y, t1, ..., tr) is a continuous bounded function on n × [0, T ]γ. Compare [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13]

Averaging a linear operator
A special case
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.