Abstract

A model for convective heating of droplets, which takes into account their finite thermal conductivity, is suggested. This model is based on the assumption of the parabolic temperature profile in the droplets. A rigorous numerical solution, without restrictions on temperature profiles inside droplets, is compared with predictions of the parabolic temperature profile and isothermal models. The comparison shows the applicability of the parabolic approximation to modelling of the heating of fuel droplets in realistic diesel engines. The simplicity of the model makes it particularly convenient for implementation into CFD codes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.