Abstract

The rapid and specific point-of-care (POC) analysis of virulent pathogenic strains plays a key role in ensuring food quality and safety. In this work, a paper-based fluorescent phage biosensor was developed for the detection of the virulent E. coli O157:H7 strain (as the mode of virulent pathogens) in food samples. Firstly, phages that can specifically combine with E. coli O157:H7 (E. coli) were stained with SYTO-13 dye to prepare a novel fluorescent probe (phage@SYTO). Simultaneously, a micro-porous membrane filter with a pore size of 0.45 μm was employed as a paper chip so as to retain the E. coli-phage@SYTO complex (>1.2 μm) on its surface. The phage@SYTO (200 nm in size) was able to pass through the pores of the chip, and the complex could be retained on the paper chip using the free phage@SYTO probes. The E. coli-phage@SYTO could emit a visual fluorescent signal (excited at 365 nm; emitted at 520 nm) onto the chip, which could be detected by a smartphone to reflect the concentration of E. coli. Under optimized conditions, the detection limit was as low as 50 CFU/mL (S/N = 3) and exhibited a wide linear range from 102 to 106 CFU/mL. The sensor has potential application value for the quick and specific POCT detection of virulent E. coli in foods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call