Abstract

This paper presents the design and testing of a one-axis piezoelectric accelerometer made from cellulose paper and piezoelectric zinc oxide nanowires (ZnO NWs) hydrothermally grown on paper. The accelerometer adopts a cantilever-based configuration with two parallel cantilever beams attached with a paper proof mass. A piece of U-shaped, ZnO-NW-coated paper is attached on top of the parallel beams, serving as the strain sensing element for acceleration measurement. The electric charges produced from the ZnO-NW-coated paper are converted into a voltage output using a custom-made charge amplifier circuit. The device fabrication only involves cutting of paper and hydrothermal growth of ZnO NWs, and does not require the access to expensive and sophisticated equipment. The performance of the devices with different weight growth percentages of the ZnO NWs was characterized.

Highlights

  • Over the past three decades, there have been numerous advances made in microfabricated sensors and actuators

  • Quality Assessment of zinc oxide nanowires (ZnO NWs) Grown on Paper

  • We investigated theineffect of time on the weight growth percentage of ZnO NWs on paper

Read more

Summary

Introduction

Over the past three decades, there have been numerous advances made in microfabricated sensors and actuators. As the research and development on microelectromechanical systems (MEMS) progress, it is increasingly common to integrate materials other than silicon into MEMS transducers. Among these developments, piezoelectric materials in either bulk or thin film forms have been integrated into MEMS devices for a variety of applications such as acoustic resonators [1,2], quartz crystal microbalance [3,4], Surface acoustic wave (SAW)-based chemical and biochemical sensors [5,6], accelerometer [7,8,9,10] and ultrasonic transducers [11,12]. There have been significant advances in paper-based transducers and electronics [13,14], and various electronic devices have been developed such as radio-frequency identifications (RFIDs) [15,16], biosensors [17,18,19], MEMS [20,21,22], transistors [23,24], capacitors [25,26], Micromachines 2018, 9, 19; doi:10.3390/mi9010019 www.mdpi.com/journal/micromachines

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.