Abstract

Cytogenetic and molecular studies have implicated one or more tumor suppressor genes on the long arm of human chromosome 11 in the malignant progression of several human solid tumors, including malignant melanoma and carcinomas of the breast, cervix, ovary, and lung. Microcell-mediated chromosome transfer of an intact copy of chromosome 11 into tumor cell lines has provided additional evidence of tumor suppressor gene function in melanoma, breast cancer, and cervical cancer. However, sublocalization of the region(s) conferring the tumor suppressive effect has been difficult. To facilitate mapping of tumor suppressor gene(s) on chromosome 11, we have generated a panel of 25 mouse donor cell lines containing neo-tagged fragments of human chromosome 11q which can be transferred into cell lines to test for tumor suppressor activity. The chromosome fragments in these cell lines have been characterized by fluorescence in situ hybridization with probes to human DNA and to the centromere of chromosome 11, and also by analysis of microsatellite markers spanning chromosome 11. Finally, to demonstrate the usefulness of these cell lines as donors for microcell-mediated chromosome transfer, two fragments were transferred into the human melanoma cell line UACC 903. This panel of selectable subchromosomal fragments, derived from the long arm of human chromosome 11, will be useful for the regional localization of tumor suppressors and other genes by means of functional assays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.