Abstract
In this article, we present a boundary element method (or panel method) applied to a cavitating propeller to investigate its performance with/without cavitation. The present method models both sheet cavitation and developed tip vortex cavitation concurrently so they can coexist in the flow induced by a propeller. The sheet cavitation can be either partial cavitation or supercavitation depending on the imposed loading on the propeller, and the developed tip vortex cavitation considers loading from the blade tip to determine its sectional volume in space and time. Elaborate numerical schemes are introduced to model both cavities, and it is shown that the present method can predict cavity patterns closely following experimental observations at various loading conditions and cavitation numbers. With the predicted cavities considered, cavitating propeller performance is predicted in potential flow and compared with experimental data, results from a viscous flow solver, and fully wetted performance to verify the accuracy and feasibility of the present method. Steady flow is considered in this study, although the method can be readily extended to unsteady problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.