Abstract

A panel-free method (PFM), based on the desingularized Green’s formulae proposed by Landweber and Macagno, has been developed to solve the radiation problem of a floating body in the time domain. The velocity potential due to a non-impulsive velocity is obtained by solving the boundary integral equation in terms of source strength distribution. The singularity in the Rankine source term of the time-dependent Green function is removed. The geometry of a body surface is mathematically represented by NURBS surfaces. The integral equation can be globally discretized over the body surface by Gaussian quadratures. No assumption is needed for certain degree of approximation of distributed source strength on the body surface. The accuracy of PFM was demonstrated by its application to a classical problem of uniform flow past a sphere. The response function of a hemisphere at zero speed was then computed by PFM. The computed response function, added-mass and damping coefficients are compared with other published results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.