Abstract

More than 60 highly conserved proteins appear sequentially at sites of clathrin-mediated endocytosis in yeast and mammals. The yeast Eps15-related proteins Pan1 and End3 and the CIN85-related protein Sla1 are known to interact with each other in vitro, and they all appear after endocytic-site initiation but before endocytic actin assembly, which facilitates membrane invagination/scission. Here we used live-cell imaging in parallel with genetics and biochemistry to explore comprehensively the dynamic interactions and functions of Pan1, End3, and Sla1. Our results indicate that Pan1 and End3 associate in a stable manner and appear at endocytic sites before Sla1. The End3 C-terminus is necessary and sufficient for its cortical localization via interaction with Pan1, whereas the End3 N-terminus plays a crucial role in Sla1 recruitment. We systematically examined the dynamic behaviors of endocytic proteins in cells in which Pan1 and End3 were simultaneously eliminated, using the auxin-inducible degron system. The results lead us to propose that endocytic-site initiation and actin assembly are separable processes linked by a Pan1/End3/Sla1 complex. Finally, our study provides mechanistic insights into how Pan1 and End3 function with Sla1 to coordinate cargo capture with actin assembly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.