Abstract

The NASA Kepler mission has revolutionised time-domain astronomy and has massively expanded the number of known extrasolar planets. However, the effect of wide multiplicity on exoplanet occurrence has not been tested with this dataset. We present a sample of 401 wide multiple systems containing at least one Kepler target star. Our method uses Pan-STARRS1 and archival data to produce an accurate proper motion catalogue of the Kepler field. Combined with Pan-STARRS1 SED fits and archival proper motions for bright stars, we use a newly developed probabilistic algorithm to identify likely wide binary pairs which are not chance associations. As by-products of this we present stellar SED templates in the Pan-STARRS1 photometric system and conversions from this system to Kepler magnitudes. We find that Kepler target stars in our binary sample with separations above 6 arcseconds are no more or less likely to be identified as confirmed or candidate planet hosts than a weighted comparison sample of Kepler targets of similar brightness and spectral type. Therefore we find no evidence that binaries with projected separations greater than 3,000AU affect the occurrence rate of planets with P<300days around FGK stars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.