Abstract

α1-Adrenergic Receptors (ARs) regulate the sympathetic nervous system by the binding of norepinephrine (NE) and epinephrine (Epi) through different subtypes (α1A, α1B, α1D). α1A-AR activation is hypothesized to be memory forming and cognitive enhancing but drug development has been stagnant due to unwanted side effects on blood pressure. We recently reported the pharmacological characterization of the first positive allosteric modulator (PAM) for the α1A-AR with predictive pro-cognitive and memory properties. In this report, we now demonstrate the in vivo characteristics of Compound 3 (Cmpd-3) in two genetically-different Alzheimer’s Disease (AD) mouse models. Drug metabolism and pharmacokinetic studies indicate sufficient brain penetrance and rapid uptake into the brain with low to moderate clearance, and a favorable inhibition profile against the major cytochrome p450 enzymes. Oral administration of Cmpd-3 (3–9 mg/kg QD) can fully rescue long-term potentiation defects and AD biomarker profile (amyloid β-40, 42) within 3 months of dosing to levels that were non-significant from WT controls and which outperformed donepezil (1 mg/kg QD). There were also significant effects on paired pulse facilitation and cognitive behavior. Long-term and high-dose in vivo studies with Cmpd-3 revealed no effects on blood pressure. Our results suggest that Cmpd-3 can maintain lasting therapeutic levels and efficacy with disease modifying effects with a once per day dosing regimen in AD mouse models with no observed side effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call