Abstract
Alpha-particle-emitting radionuclides have been the subject of considerable investigation as cancer therapeutics, since they have the advantages of high potency and specificity. Among α-emitting radionuclides that are medically relevant and currently available, the lead-212/bismuth-212 radionuclide pair could constitute an in vivo generator. Considering its short half-life (T1/2 = 60.6 min), 212Bi can only be delivered using labelled carrier molecules that would rapidly accumulate in the target tumor. To expand the range of applications, an interesting method is to use its longer half-life parent 212Pb (T1/2 = 10.6 h) that decays to 212Bi. The challenge consists in keeping 212Bi bound to the vector after the 212Pb decay. Preclinical and clinical studies have shown that a variety of vectors may be used to target alpha-emitting radionuclides to cancer cells. Nanoparticles, notably liposomes, allow combined targeting options, achieving high specific activities, easier combination of imaging and therapy and development of multimodality therapeutic agents (e.g., radionuclide therapy plus chemotherapy). The aim of this work consists in assessing the in vitro stability of 212Pb/212Bi encapsulation in the liposomes. Indeed, the release of the radionuclide from the carrier molecules might causes toxicity to normal tissues. To reach this goal, Asymmetrical Flow Field-Flow Fractionation (AF4) coupled with a Multi-Angle Light Scattering detector (MALS) was used and coupling with a gamma (γ) ray detector was developed. AF4-MALS-γ was shown to be a powerful tool for monitoring the liposome size together with the incorporation of the high energy alpha emitter. This was successfully extended to assess the stability of 212Bi-radiolabelled liposomes in serum showing that more than 85% of 212Pb/212Bi is retained after 24 h of incubation at 37 °C.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.