Abstract

Multi-shot interleaved echo planer imaging (Ms-iEPI) can obtain diffusion-weighted images (DWI) with high spatial resolution and low distortion, but suffers from ghost artifacts introduced by phase variations between shots. In this work, we aim at solving the ms-iEPI DWI reconstructions under inter-shot motions and ultra-high b-values. An iteratively joint estimation model with paired phase and magnitude priors is proposed to regularize the reconstruction (PAIR). The former prior is low-rankness in the k-space domain. The latter explores similar edges among multi-b-value and multi-direction DWI with weighted total variation in the image domain. The weighted total variation transfers edge information from the high SNR images (b-value = 0) to DWI reconstructions, achieving simultaneously noise suppression and image edges preservation. Results on simulated and in vivo data show that PAIR can remove inter-shot motion artifacts very well (8 shots) and suppress the noise under the ultra-high b-value (4000 s/mm2) significantly. The joint estimation model PAIR with complementary priors has a good performance on challenging reconstructions under inter-shot motions and a low signal-to-noise ratio. PAIR has potential in advanced clinical DWI applications and microstructure research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.