Abstract

By employing enantiomerically pure mono-bidentate N-donors (LR/LS) as chiral bridging ligands to react with Cu(ClO4)2(H2O)6 in CH3CN-DMF mixed solvent, respectively, a pair of ionic one-dimensional (1D) Cu(II) chain enantiomers formulated as {[CuLR(CH3CN)(DMF)H2O](ClO4)2}n/{[CuLS(CH3CN)(DMF)H2O](ClO4)2}n (D-1/L-1) were isolated and structurally characterized, where LR/LS = (-)/(+)-4,5-pinenepyridyl-2-pyrazine. They crystallize in the noncentrosymmetric (NCS) P212121 space group of an orthorhombic system due to the introduction of chiral LR/LS, and the ClO4- groups as counteranions reside in crystal lattices, thus leading to charge separation with large dipole moments in their molecular structures. Based on crystal samples, investigation on their nonlinear optical (NLO) behaviors showed that D-1 and L-1 display simultaneously much larger second- and third-harmonic generation (SHG and THG) responses than their analogues based on the same chiral N-donors (LR/LS) and Cu(NO3)2(H2O)3 with NO3- acting as the coordination group to bind Cu(II) ions. The SHG intensities of D-1/L-1 are 0.62/0.60 × KDP (KH2PO4), and THG intensities of D-1/L-1 are 238/228 × α-SiO2. Our finding indicates that coordination polymers (CPs) with charge separation and NCS structures, i.e., ionic CPs with NCS arrangements are the ideal NLO crystalline materials for the simultaneous observation of large SHG and THG responses, thus providing a new approach to obtain NLO-active CP crystalline materials with high-performance SHG and THG responses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.