Abstract
G(2) ⊇ SU(2)×SU(2) is a two-missing-labels problem, and therefore in order to give a complete and orthogonal specification of states of irreducible representations of G(2) in an SU(2)×SU(2) basis, one needs to find a pair of commuting Hermitian operators which are scalar with respect to the SU(2)×SU(2) subalgebra. A theorem due to Peccia and Sharp states that there are, apart from the Lie algebra invariants, twice as many functionally independent scalars as missing labels. Here two commuting SU(2)×SU(2) scalars are obtained, both of sixth order in the G(2) basis elements. They are in fact combinations of five scalars of different tensorial types, indicating that the functionally independent ones are in general insufficient to provide the lowest-order commuting scalars. An expression for the sixth-order invariant of G(2) is also obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.