Abstract

Tuning the content of copper is of great significance for the treatment of cancer and neurodegenerative diseases. Herein, we synthesized a redox-responsive paclitaxel (PTX) prodrug by conjugating PTX with a copper chelator through a disulfide bond. The as-fabricated prodrug (PSPA) showed specific chelation toward copper ions and could assemble with distearoyl phosphoethanolamine-PEG2000 to form stable nanoparticles (PSPA NPs) in aqueous media. Upon being internalized by tumor cells, PSPA NPs could respond to high levels of redox-active species inside cells and efficiently release PTX. The copper chelator could increase oxidative stress- and abnormal metabolism-induced cell death through intracellular copper depletion. The combination of chemotherapy and copper depletion therapy generated an enhanced therapeutic outcome toward triple-negative breast cancer with an ignorable systemic toxicity. Our work may provide insight into the combination of metabolic regulation and chemotherapy for combating malignant tumors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call