Abstract

Brain-computer interfaces (BCIs) are tools for controlling computers and other devices without using muscular activity, employing user-controlled variations in signals recorded from the user’s brain. One of the most efficient noninvasive BCIs is based on the P300 wave of the brain’s response to stimuli and is therefore referred to as the P300 BCI. Many modifications of this BCI have been proposed to further improve the BCI’s characteristics or to better adapt the BCI to various applications. However, in the original P300 BCI and in all of its modifications, the spatial positions of stimuli were fixed relative to each other, which can impose constraints on designing applications controlled by this BCI. We designed and tested a P300 BCI with stimuli presented on objects that were freely moving on a screen at a speed of 5.4°/s. Healthy participants practiced a game-like task with this BCI in either single-trial or triple-trial mode within four sessions. At each step, the participants were required to select one of nine moving objects. The mean online accuracy of BCI-based selection was 81% in the triple-trial mode and 65% in the single-trial mode. A relatively high P300 amplitude was observed in response to targets in most participants. Self-rated interest in the task was high and stable over the four sessions (the medians in the 1st/4th sessions were 79/84% and 76/71% in the groups practicing in the single-trial and triple-trial modes, respectively). We conclude that the movement of stimulus positions relative to each other may not prevent the efficient use of the P300 BCI by people controlling their gaze, e.g., in robotic devices and in video games.

Highlights

  • The P300 Brain-computer interfaces (BCIs) and movement A brain-computer interface (BCI) is a communication system that provides the user with the ability to send messages or commands to the external world without using the brain’s normal output pathways, i.e., without using peripheral nerves and muscles [1]

  • BCIs are primarily developed as an assistive technology to help people with severe paralysis, but this technology is increasingly used by healthy people, especially in video games [2]

  • The volunteers were randomly assigned to two groups: the ST group (n = 6, 4 females), which practiced in Single-Trial BCI mode, and the TT group (n = 6, 5 females), which practiced in Triple-Trial mode

Read more

Summary

Introduction

The P300 BCI and movement A brain-computer interface (BCI) is a communication system that provides the user with the ability to send messages or commands to the external world without using the brain’s normal output pathways, i.e., without using peripheral nerves and muscles [1]. Within BCI technology, fundamentally new aspects of interaction between the brain and computers emerge because this technology provides completely new “output pathways” for the brain [3]. Operation of these pathways typically requires conscious control, but interestingly, unconscious BCI control is possible [4]. The most commonly used BCI is likely the P300based BCI (the P300 BCI) [5]. In this BCI, available commands are coded by stimuli presented at different locations and times. As soon as the BCI recognizes one of the stimuli as attended, the system executes the command that corresponds to this stimulus

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.