Abstract
The partial pressure of oxygen (pO2) is suggested to have a regulatory effect on chondrocyte biosynthetic activities, and its effect during expansion is unknown. The authors hypothesize that oxygen tension due to mechanical deformation or swelling could be as important as direct mechanical effects on cell biosynthetic activities. While there are plenty of studies on measuring and/or modelling pO2 in articular cartilage (AC) for static (rest) conditions, to the best of the authors' knowledge there are very few such studies on pO2 in AC for dynamic conditions such as swelling or tissue deformation. In this study, it is attempted to develop a model to study the dynamics of oxygen transport in AC. A high-precision hybrid element is designed using the p-type finite element method, by which diffusion and convection are incorporated as a single element. A domain decomposition method is used that allows the use of a different type of discretization with independent discretization variables in non-overlapping sub-domains, for a generic three-dimensional approach to elliptic boundary value problems of order 2 or higher. The formulation developed in this study might be used in determining the necessary flow conditions to cultivate tissue constructs in tissue repair and tissue engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.