Abstract

A one-stage meshless method is devised for solving Cauchy boundary value problems of elliptic partial differential equations (PDEs) with variable coefficients. The main idea is to approximate an unknown solution using a linear combination of fundamental solutions and radial basis functions. Compared with the two-stage method of particular solution, the proposed method can deal with more general elliptic PDEs with variable coefficients. Several numerical results in both two- and three-dimensional space show that our proposed method is accurate and effective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.