Abstract

Given bins of size B, non-negative values d and @D, and a list L of items, each item [email protected]?L with size se and class ce, we define a shelf as a subset of items packed inside a bin with total item sizes at most @D such that all items in this shelf have the same class. Two subsequent shelves must be separated by a shelf division of size d. The size of a shelf is the total size of its items plus the size of the shelf division. The class constrained shelf bin packing problem (CCSBP) is to pack the items of L into the minimum number of bins, such that the items are divided into shelves and the total size of the shelves in a bin is at most B. We present hybrid algorithms based on the First Fit (Decreasing) and Best Fit (Decreasing) algorithms, and an APTAS for the problem CCSBP when the number of different classes is bounded by a constant C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.