Abstract

A one-time pad encryption method combining full-phase image encryption and hiding is proposed. Firstly, original images are encoded in the phase and encrypted by phase keys loaded on the phase-only liquid crystal spatial light modulator, where the phase keys can be distributed using a quantum key distribution method. Subsequently, a host image is introduced to produce a reference wave, and overlap with an object wave to form an interferogram. Finally, based on phase-shifting interferometry, we can achieve the above encrypted image hiding. Both the simulation and experiment research demonstrate the feasibility of the proposed method, meanwhile the key and the encrypted image can be changed randomly, so the proposed system reveals the high flexibility, anti-attack ability and can be used to implement the one-time pad to achieve absolute secure transmission with the quantum key distribution method. Moreover, system security will be improved due to the fact that encryption information hidden in the host image can be treated as background noise, which does not attract the attention of the attacker.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call