Abstract

Streptavidin is a tetrameric protein with high specificity and affinity for biotin. The interaction between avidin and biotin has become a valuable tool in nanotechnology. In recent years, the site-specific biotin modification of proteins using biotin ligases, such as BirA, has attracted attention. This study established an in vivo method for achieving the complete biotinylation of target proteins using a single plasmid co-expressing BirA and its target proteins. Specifically, a biotin-modified protein was produced in Escherichia coli strain BL21(DE3) using a single plasmid containing genes encoding both BirA and a protein fused to BirA's substrate sequence, Avitag. This approach simplifies the production of biotinylated proteins in E. coli and allows the creation of various biotinylated protein types through gene replacement. Furthermore, the biotin modification rate of the obtained target protein could be evaluated using Native-PAGE without performing complicated isolation operations of biotinylated proteins. In Native-PAGE, biotin-modified proteins and unmodified proteins were confirmed as clearly different bands, and it was possible to easily derive the modification rate from the respective band intensities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.