Abstract

This paper describes a third-derivative hybrid multistep technique (TDHMT) for solving second-order initial-value problems (IVPs) with oscillatory and periodic problems in ordinary differential equations (ODEs), the coefficients of which are independent of the frequency omega and step size h . This research is significant because it has numerous applications to real-life phenomena such as chaotic dynamical systems, almost periodic problems, and duffing equations. The current method is derived from the collocation of a derivative function at the equidistant grid and off-grid points. The TDHMT obtained is a continuous scheme for obtaining simultaneous approximations to the solution and its derivative at each point in the x 0 , x N interval integration. The presence of high derivatives increases the order of the method, which increases the accuracy method’s order and the stability property, as discussed in detail. Finally, the proposed method is compared to existing methods in the literature on some oscillatory and periodic test problems to demonstrate the technique’s effectiveness and productivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.