Abstract

A one-dimensional (1-D) multi-component model accounting for hydrological transport inorganic equilibrium chemistry and microbial activity during kinetically controlled biodegradation in groundwater of compounds such as benzene, toluene, ethylbenzene and xylenes (BTEX) is presented. The problem is solved numerically using an operator-splitting method to couple advective–dispersive transport of organic and inorganic solutes with a geochemical equilibrium package PHREEQC and a biodegradation module. The transport equations for inorganic solutes are solved for total aqueous component concentrations. Changes in such concentrations due to precipitation/dissolution of minerals and chemical speciation are accounted for within PHREEQC. For chemical elements occurring in multiple valence states, separate components are defined and transported. The biodegradation module simulates the sequential or parallel activity of multiple bacterial groups attached to soils and their biochemical effects. The model has been evaluated by comparison with an existing model simulation of a 1-D inorganic redox problem. An application of the model is shown for a synthetic case where BTEX compounds are degraded by sequential reduction of aqueous electron acceptors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.