Abstract

The paper presents a one-dimensional transient mathematical model of compressible thermal multi-component gas mixture flow in a shock tube. The set of mass, momentum and enthalpy conservation equations is solved for the gas phase. Thermo-physical properties of multi-component natural gas mixture are calculated by solving the Equation of State (EOS) in the form of the Soave-Redlich-Kwong (SRK-EOS) model. The proposed mathematical model is validated against the experiments where the decompression wave speed in dry natural gases was measured at low temperatures and shows a good agreement with the experimental data at high and low initial pressure. The effect of the initial temperature on rapid decompression process is investigated numerically using the proposed model. Numerical results show that the proposed model simulates the decompression in natural gases much better and accurate than other models, and shows a great potential because it can be extended on the case of gas–liquid two-phase flow in a shock tube.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call