Abstract

The calculation of isentropic flow and normal shock waves of real gases are important, especially in the preliminary design of turbo-machinery and test rigs. In an ideal gas, the relations for one-dimensional isentropic flow and normal shock waves are well known and can be found in standard textbooks. However, for fluids exhibiting strong deviations from the ideal gas assumption universal relations do not exist due to complex equations of state. This paper presents a analytical method for the prediction of isentropic real gas flows and normal shock waves, based on the Redlich-Kwong (RK) equation of state. Explicit expressions based on a series expansion for describing isentropic flow of Novec™ 649 are compared to Refprop data and ideal gas equations. For moderate pressures the RK method is in very good agreement with the Refprop data, while the ideal gas equations fail to predict the real gas behaviour. The same observations are made for normal shock calculations, where both real gas methods yield very close results. Especially the predicted stagnation pressure losses across a shock wave are in excellent agreement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call