Abstract

The optimization of animal feeds and cell culture media are problems of interest to a wide range of industries and scientific disciplines. Both problems are dictated by the properties of an organism's metabolism. However, due to the tremendous complexity of metabolic systems, it can be difficult to predict how metabolism will respond to changes in nutrient availability. A common tool used to capture the complexity of metabolism in a computational framework is a genome-scale metabolic model (GEM). GEMs are useful for predicting the fluxes of reactions within an organism's metabolism. To optimize feed or media, in silico experiments can be performed with GEMs by systematically varying nutritional constraints and predicting metabolic activity. In this way, the influence of various nutritional changes on metabolic outcomes can be evaluated. However, this methodology does not guarantee an optimal solution. Here, we develop a nutrition algorithm that utilizes linear programming to search the entire flux solution space of possible dietary intervention strategies to identify the most efficient changes to nutrition for a desirable metabolic outcome. We illustrate the utility of the nutrition algorithm on GEMs of Atlantic salmon (Salmo salar) and Chinese hamster ovary (CHO) cell metabolism and find that the nutrition algorithm makes predictions that not only align with experimental findings but reveal new insights into promising feeding strategies. We show that the nutrition algorithm is highly versatile and customizable to meet the user's needs. For instance, we demonstrate that the nutrition algorithm can be used to predict feed/media compositions that maximize profit margins. While the nutrition algorithm can be used to define an optimal feed/medium ab initio, it can also identify minimal changes to be made to an existing feed/medium to drive the largest metabolic shift. Moreover, the nutrition algorithm can target multiple metabolic pathways simultaneously with only a marginal increase in computational expense. While the nutrition algorithm has its limitations, we believe that this tool can be leveraged in a broad range of biotechnological applications to enhance the feed/medium optimization process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call