Abstract
Inspired by the idea of charge decomposition in calculation of the dipole preserving and polarization consistent charges (Zhang et al., J. Comput. Chem. 2011, 32, 2127), we have proposed a numerically stable restrained electrostatic potential (ESP)-based charge fitting method for protein. The atomic charge is composed of two parts. The dominant part is fixed to a predefined value (e.g., AMBER charge), and the residual part is to be determined by restrained fitting to residual ESP on grid points around the molecule. Nonuniform weighting factors as a function of the dominant charge are assigned to the atoms. Because the residual part is several folds to several orders smaller than the dominant part, the impact of ill-conditioning is alleviated. This charge fitting method can be used in quantum mechanical/molecular mechanical (QM/MM) simulations and similar studies, where QM calculated electronic properties are frequently mapped to partial atomic charges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.