Abstract

A stepwise coupled-mode solution with the use of the direct global matrix approach is proposed. This method is capable of handling two-dimensional problems with either a point source in cylindrical geometry or a line source in plane geometry. With the use of the direct global matrix approach, this method is numerically stable. In addition, by introducing appropriately normalized range solutions, this model is free from the numerical overflow problem. Furthermore, we put forward general source conditions for the line-source problem in plane geometry. As a result, this method is capable of addressing the scenario with a line source on top of a sloping bottom. Closed-form expressions for coupling matrices are derived and applied for handling problems with perfectly reflecting boundaries as well as a homogeneous water column. The numerical simulations indicate that the proposed model is accurate, efficient, and numerically stable. Consequently, this model can serve as a benchmark model in range-dependent propagation modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.