Abstract

A numerically stable algorithm based on the orthogonal function solution of the 2-D Radon transform is given. This form of image reconstruction is often called circular harmonic transform (CHT) reconstruction. Series of Zernike polynomials are evaluated by solving a system of nonhomogeneous difference equations. The solution is based on a recursion formula for Zernike polynomials. We show that the method is numerically stable for the paraxial case. This algorithm overcomes the loss of spatial and contrast resolution associated with CHT algorithms. When compared with ramp-filtered back-projection, it is more resistant to ringing and it is not subject to systematic errors that seem to be caused by the discretization of the back-projection operator. The execution time is proportional to ${{9N^3 } / {32}}$ for $N^2 $ points on a polar grid, so that it is comparable to back-projection methods in execution time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.