Abstract

We present a novel numerically robust and computationally efficient extended Kalman filter for state estimation in nonlinear continuous-discrete stochastic systems. The resulting differential equations for the mean-covariance evolution of the nonlinear stochastic continuous-discrete time systems are solved efficiently using an ESDIRK integrator with sensitivity analysis capabilities. This ESDIRK integrator for the mean-covariance evolution is implemented as part of an extended Kalman filter and tested on a PDE system. For moderate to large sized systems, the ESDIRK based extended Kalman filter for nonlinear stochastic continuous-discrete time systems is more than two orders of magnitude faster than a conventional implementation. This is of significance in nonlinear model predictive control applications, statistical process monitoring as well as grey-box modelling of systems described by stochastic differential equations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call