Abstract

A common approach for predicting member response under blast loading is through the use of a finite element software package. Such an analysis typically requires the implementation of a three dimensional mesh and, therefore, requires significant computational effort. In this paper, it is shown how a displacement based segmental moment-rotation (M/θ) analysis can be used to simulate the cracking and softening behavior of reinforced concrete over a segment of a member using the mechanics of partial interaction and shear friction. It is then shown how the M/θ behavior extracted from the segmental analysis can be simplified into an equivalent one dimensional moment curvature relationship which can then be incorporated into a fast running one dimensional finite element approach to determine the response of reinforced concrete slabs subjected to blast loading. Then, results determined using the approach are compared against those obtained from blast experiments and the numerical efficiency of the model is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.