Abstract

This paper describes a numerical model of the world ocean based on the fully primitive equations. A “Standard” ocean state is introduced into the equations of the model and the perturbed thermodynamic variables are used in the modle’s calculations. Both a free upper surface and a bottom topography are included in the model and a sigma coordinate is used to normalize the model’s vertical component. The model has four unevenly-spaced layers and 4 x 5 horizontal resolution based on C-grid system. The finite-difference scheme of the model is designed to conserve the gross available energy in order to avoid fictitious energy generation or decay. The model has been tested in response to the annual mean surface wind stress, sea level air pressure and sea level air temperature as a preliminary step to its further improvement and its coupling with a global atmospheric general circulation model. Some of results, including currents, temperature and sea surface elevation simulated by the model are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.