Abstract

ObjectiveThermocycling is widely used to age dental composites but with very different results from one study to another, even with apparent similar conditions. This study aims at understanding better the relative damaging speed of matrix and fillers, based on theoretical models. MethodsEight formulations of an experimental dental material were produced. The same organic matrix was used and silanated barium glass particles were added as fillers with different filler ratios. Samples were thermocycled up to 10 000 cycles. Three-point bending tests were carried out at different steps. The yield stress was measured among other mechanical properties. ResultsComposite properties were degraded by thermocycling. The decrease was slight during the first 5 000 cycles whereas it decreased significantly after 10 000 cycles. The Turcsányi model asserts that the interface yield stress is slightly affected in the first 5 000 cycles and then falls down, while the decrease of matrix yield stress is linear. SignificanceEach component of a composite does not age at the same rate. First, the matrix acts as a protector until the water finds its way to the interphase. The filler silanization treatment is highly sensitive to hydrolysis and is damaged rapidly from that moment. Numerical simulations and surface observations confirmed that cracks appear to propagate in the neighbourhood of the interface but not directly within it.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.