Abstract

Abstract A uniform temperature distribution is important to obtain better control and higher performance of polymer electrolyte membrane fuel cells (PEMFCs). In PEMFCs, more than half of the chemical energy of hydrogen is converted into heat during the electrochemical generation of electricity. If not being properly exhausted, this reaction heat overheats the PEMFCs and thus impairs their performance and durability. In general, large-scale PEMFCs are cooled by liquid water that circulates through coolant flow channels in bipolar plates or in dedicated cooling plates. In this study, detailed fluid flow and heat transfer in large-scale cooling plates with 18 cm × 18 cm square area was simulated using a commercial computational fluid dynamics (CFD) code. Based on the CFD simulations, the performances of six different coolant flow field designs were assessed in terms of the maximum temperature, temperature uniformity, and pressure drop characteristics. The results demonstrated that multi-pass serpentine flow field (MPSFF) designs could significantly improve the uniformity of temperature distribution in a cooling plate compared with the conventional serpentine flow field designs, while maintaining the coolant pressure drop similar.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.