Abstract

To further study the smoke dispersion and the temperature distribution in ship engine room fires, the fire dynamics solver buoyantReactingFOAM in the software OpenFOAM-10 is used to conduct a numerical simulation study on a pool fire caused by fuel oil leakage in a ship engine room. The applicability of this solver in simulating ship-engine-room-scale fires is validated by comparing it with experimental data. The impact of the mechanical ventilation, fire area, and fire position on the smoke dispersion and the temperature distribution in the ship engine room during the fire are considered in the simulation study, with a focus on the control room and the escape exit. The simulation results of buoyantReactingFOAM agree well with the experimental data. The simulated results of the case study show that for both in the control room and near the escape exit, among the factors of fire position, fire area, and the ventilation situation, the fire position affects the temperature distribution and the smoke dispersion most heavily, followed by the fire area and then the ventilation situation, which has the least influence on them. But, compared to the control room, the influence degree of the ventilation air velocity in the escape exit is larger than that in the control room. With an increase in the fire area, the spread rate of high temperature and high smoke concentration increases. With an increase in the ventilation air velocity, the aggregation degree of smoke and temperature decreases, but its decreasing range is very small when the ventilation air velocity is larger than 2 m/s.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call