Abstract

The nonlinear behavior of corner supported plates and curved shell panels is investigated here using the first-order shear deformation theory based on Marguerre’s membrane strains for shallow shells and von Karman’s nonlinearity. The nonlinear differential equations are transformed into a set of nonlinear algebraic equations by using the element-free Galerkin method. The moving kriging shape function with two different types of correlation formulae (Gaussian and quartic spline) is employed here. After studying the effectiveness of the method, a detailed parametric study is conducted to examine the effect of support size on the displacements and bending moments of corner supported rectangular plates. Thereafter, the numerical study is extended to the nonlinear bending and stability behaviors of corner supported shallow cylindrical and spherical shell panels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.