Abstract

The free-vibration problem of (0°/90°/90°/0°) laminated composite cylindrical helical springs is modeled theoretically as a continuous system. The first-order shear deformation theory is employed in the mathematical model. The free-vibration equations are solved by the transfer matrix method. A nondimensional parametric study is performed to investigate the effects of the number of active coils, the ratio of the diameter of the cylinder to the thickness of section, the helix pitch angle, and material types on the first six natural frequencies of helical springs with square section and fixed-fixed ends.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call