Abstract

The Xiangshan Bay is a semi-enclosed and narrow bay, which is characterized by large scale tidal flats and has been historically utilized through coastal construction and aquaculture engineering. The hydrodynamic model using the Finite Volume Coastal Ocean Model (FVCOM) was constructed to examine the changes of tidal dynamics due to the variation of tidal flat slopes. According to the model results, a decreased slope of a tidal flat would amplify the M2 tidal amplitude and delay the M2 tidal phase in the inner harbor, due to an increased tidal prism, and vice versa. The amplitude of the main shallow-water tide M4 would be amplified/dampened in the entire bay due to the changed bottom friction, if the tidal flat’s slope were reduced/increased at the Tie inlet. The phase was advanced. The change of a tidal flat’s slope at the Tie inlet had greater impacts on tidal amplitude, phase and duration asymmetry, than that at the Xihu inlet. The impact of changes of the tidal flat slope at the Xihu inlet was small and was constrained locally. Changes in the tidal flats’ slopes at the Tie and Xihu inlets changed the tidal duration asymmetry, residual current and tidal energy via modulating tides. The ebb dominance decreased when the tidal flat’s slope at the Tie inlet was changed. Decreased/increased ebb dominance occurred when the tidal flat’s slope was reduced/increased at the Xihu inlet. The residual current and tidal energy density was amplified/dampened and more/less tidal energy was dissipated, with reduced/increased slope at both of the inlets. The findings in this study are instructive to coastal engineering and estuarine management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.