Abstract

With the advancement of fuel cell technologies and growing interest in the hydrogen economy, the small-scale, distributed production of hydrogen has recently been receiving considerable research attention. The steam methane reforming (SMR) process, an established industrial process for large-scale hydrogen production, can also be successfully deployed for small-scale, low-pressure hydrogen production systems, including compact reformers, microchannel reformers, plate reformers, and monolithic reformers. In this study, the active reaction thickness of nickel catalyst layers was numerically determined by solving one-dimensional reaction/diffusion problems with finite volume method. The small-scale SMR conditions were considered, such as the reforming pressure of 1–3 bar, reforming temperature of 600–800 °C, and steam-to-carbon ratio of 2–4. The results showed the active thickness for the steam reforming and reverse methanation reactions hardly exceeded 0.15 mm for 600 °C, 0.07 mm for 700 °C, and 0.05 mm for 800 °C, at the reforming pressure of 1 bar. Besides, the effects of the volume-specific nickel surface area and diffusion properties were also investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call