Abstract

This paper presents a non-linear finite element analyses in order to optimize the seismic characteristics of strap-braced cold formed steel shear walls enhanced with brackets in the four interior corners of the wall. The numerical models presented here are verified based on experimental tests considering different structural characteristics including: material nonlinearity, geometrical imperfection, residual stresses and perforations. A comparison between the numerical simulations and the test results shows a good agreement proves that the finite element analysis can be used effectively to predict the ultimate capacity of strap-braced CFS shear panels. A total of 16 models with different variants of bracket length are investigated. Of particular interests were the specimens' maximum lateral load capacity and deformation behavior in addition to a rational estimation of the seismic response modification factor. Preliminary conclusions presented in this paper, refer to the optimum seismic characteristics of strap-braced CFS shear walls and the corresponding dimensions and configuration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.