Abstract

AbstractA two-dimensional, two-phase flow model is applied to the study of sediment motion over vortex ripples under oscillatory flow conditions. The Reynolds-averaged continuity equations and momentum equations for both the fluid and sediment phases, which include the drag force, the added mass force, the lift force for interphase coupling, and the standard k–ε turbulence model as well as the Henze–Tchen particle turbulence model for closure, are numerically solved with a finite-volume method. The model is effective over the whole depth from the undisturbed sandy bed to the low concentration region above the ripples. Neither a reference concentration nor a pickup function is required over the ripple bed as in a conventional advection–diffusion model. There is also no need to identify the bed load and the suspended load. The study focuses on the effects of erodible ripples on the intrawave flow and sediment motion over the ripples. The computational results show reasonable agreement with the available laboratory data. It is demonstrated that the formation–ejection process of vortices and the trapping–lifting process of sediment over vortex ripples can be well described by the two-phase flow model. The numerical model can also accurately predict the vertical distribution of the mean sediment concentration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.