Abstract

This study presents the concept of improving the efficacy of cryosurgery using a low thermal conductivity liquid around the interface of a tumour. In the same context, perfluorohexane, a low thermal conductivity liquid has been used for the insulation of tumour. In the presence of a perfluorohexane layer, results demonstrate that the lethal front and the freezing front do not cross the tumour boundary. The results of numerical modelling indicate that there is an optimal thickness of the perfluorohexane layer which enables a perfect insulation to the tumour. Further, the contour plot presents that the optimal thickness of the perfluorohexane layer is 1 mm. The results also suggest that the lethal front reaches the tumour boundary at 100 s when perfluorohexane is used as an insulation at the tumour boundary. It is seen that a change in the thermal conductivity of the insulation at the tumour interface affects the lethal front propagation drastically. Among perfluorohexane, octafluoropropane and water, this study reveals perfluorohexane as the best substitute for the formation of the insulating layer at the tumour interface. The lower thermal conductivity of perfluorohexane provides a good barrier to the healthy tissue surrounding the tumour (as seen from the comparison of gap, i.e. the distance between the lethal front and the tumour interface). Furthermore, the calculation of gap indicates the most optimal configuration for cooling the tumour (termed as the optimal offset). In conclusion, the results presented in the study help in optimising the layer thickness at the tumour interface, the identification of an appropriate substance for making the layer and the use of gap to evaluate the most optimal configuration for freezing the tumours effectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call