Abstract

Northern pike is regarded as a specialist in swimming acceleration. The force production mechanism of northern pike, Esox lucius, during its predation S-starts was numerically studied in this article. The problem was reasonably simplified to a loose-coupling problem of fish swimming dynamics and hydrodynamics just in the swimming direction. The approach involved the simulation of the flow by solving the two-dimensional unsteady incompressible Navier-Stokes equations and decribing the fish motion dynamics based on Newton's Second Law. Visualizations of flow fields and vortex structures were performed. The results show that the large acceleration is obtained mainly in the first undulatory cycle in which the amplitude increases. In the second cycle, a couple of vortices are generated and induce a jet. In the third cycle, the jet is strengthened by the mergence of the vortices in the same direction. Through discussing the effects of various controllable factors on the swimming performance, it is found that the actual locomotion mode of the northern pike in nature is just the best choice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.