Abstract

In this study, fluid viscosity effects on LSP performance in terms of boosting pressure were numerically investigated. A water–glycerin mixture with different concentrations corresponding to varying apparent viscosities was flowed through an in-house manufactured LSP under various flow conditions, e.g., changing flow rates, rotational speeds, and fluid viscosities. The pressure increment between the intake and discharge of the LSP was recorded using the differential pressure transducer. The same pump geometries, fluid properties and flow conditions were incorporated into the numerical configurations, where three-dimensional (3D), steady-state, Reynolds-averaged Navier–Stokes (RANS) equations with a standard SST (shear stress transport) turbulence model were solved by a commercial CFD code. With the high-quality poly-hexcore grids, the simulated pressure increment was compared with the corresponding experimental measurement. The internal flow structures and characteristics within the cavities contained by the LSP impeller and diffuser were also analyzed. The good agreement between the numerical results against the experimental data verified the methodology adopted in this study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.