Abstract

Hydrodynamically and thermally fully developed, steady, incompressible laminar flow in a concentric curved annular duct is investigated numerically under constant wall temperature boundary condition. The equations of discretized continuity, momentum, and energy have been solved numerically, and a computer code for the present mathematical model has been developed. The secondary flow streamlines, isotherms, and velocity profiles as well as the local and the average Nusselt numbers and friction factors are presented for various values of annulus dimension ratio and Dean number. The secondary flows resulting from centrifugal forces affect the distribution of the velocity and the temperature. As a consequence of this study, it was determined that viscous forces become more effective upon centrifugal forces while the annulus dimension ratio decreases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.