Abstract
Clarification of crack generation mechanism in the top coat of the thermal barrier coatings (TBCs) during atmospheric plasma spray process is important to improve the reliability of TBC. In this study, finite element analyses of stress and strain during the deposition process were conducted with layer-by-layer method to understand the cracking behaviors. Stress relaxation by generation of vertical cracks was expressed as an elasto-plastic behavior of the coating. The effects of pre-heating temperature of the substrate and plasma power on crack development were analyzed by changing of the initial and atmospheric temperatures in simulation, respectively. The simulation results of radial strain explained the experimental results of crack monitoring by non-contact laser acoustic emission method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Thermal Spray Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.